搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交说明
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳光子结构中光子和激子相互作用

段雪珂 ,  任娟娟 ,  郝赫 ,  张淇 ,  龚旗煌 ,  古英

downloadPDF
引用本文:
Citation:
  • 专题:等离激元增强光与物质相互作用

微纳光子结构中光子和激子相互作用

段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英

Interactions between photons and excitons in micro-nano photonic structures

Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying
  • 摘要
  • 图表
  • 参考文献(96)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    微纳光子结构中超强的光场局域给光和物质相互作用带来了新的研究机遇. 通过设计光学模式, 微纳结构中的光子和激子可以实现可逆或者不可逆的能量交换作用. 本文综述了我们近年来在微纳结构, 尤其是表面等离激元及其复合结构中光子和激子在强弱耦合区域的系列研究工作, 如高效可调谐及方向性的单光子发射, 利用电磁真空构造增强光子和激子的耦合等. 这些工作为微纳尺度上光和物质作用提供了新的物理内容, 在芯片上量子信息过程及可扩展的量子网络构建中有潜在应用.
      关键词:
    • 表面等离激元 / 
    • 腔量子电动力学 / 
    • 强耦合 / 
    • 弱耦合 

    Abstract

    The strong localized field in micro-nano photonic structures brings new opportunities for the study of the light-matter interaction. By designing optical modes in these structures, photons and excitons in micro-nanostructures can exchange energy reversibly or irreversibly. In this paper, a series of our recent studies on the strong and weak photon-emitter coupling in micro-nano structures especially in plasmonic and their coupled structures are reviewed, such as the principle of efficient, tunable and directional single photon emission, and engineering the electromagnetic vacuum for enhancing the coupling between photon and exciton. These results provide new physical contents for the light-matter interactions on micro and nanoscale, and have potential applications in the on-chip quantum information process and the construction of scalable quantum networks.
      Keywords:
    • plasmonics / 
    • cavity quantum electrodynamics / 
    • strong coupling / 
    • weak coupling 

    作者及机构信息

      通信作者: 古英, ygu@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2018YFB1107200)、国家自然科学基金(批准号: 11525414, 11734001)和广东省重点领域研发计划 (批准号: 2018B030329001 )资助的课题.

    Authors and contacts

      Corresponding author: Gu Ying, ygu@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1107200), the National Natural Science Foundation of China (Grant Nos. 11525414, 11734001), and the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030329001) .

    文章全文 : translate this paragraph

    参考文献

    [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102 Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357 Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357 Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318 Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737 Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80 Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839 Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463 Google Scholar

    [9]

    Benson O 2011 Nature 480 193 Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263 Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372 Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551 Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81 Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325 Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379 Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89 Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282 Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002 Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402 Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404 Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65 Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903 Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654 Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401 Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812 Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601 Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602 Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174 Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245 Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431 Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111 Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402 Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002 Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427 Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002 Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245 Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002 Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459 Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971 Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807 Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879 Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488 Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783 Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83 Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181 Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200 Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197 Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401 Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557 Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075 Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671 Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062 Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601 Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801 Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281 Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401 Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329 Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127 Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401 Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358 Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882 Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433 Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244 Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203 Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681 Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401 Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441 Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502 Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802 Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001 Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835 Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115 Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393 Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930 Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369 Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845 Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131 Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816 Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303 Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603 Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475 Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925 Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817 Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453 Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139 Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473 Google Scholar

    施引文献

  • 图 1  (a)腔量子电动力学体系, κ为腔模的损耗, γ为量子体系的自发辐射速率[ 9], g代表它们的耦合强度; (b)弱耦合(红线)和强耦合(蓝线)情况下的能量交换及透射谱[ 9]; (c)弱耦合下的自发辐射增强示意图[ 7]; (d)强耦合下的周期性能量交换示意图[ 7]

    Fig. 1.  (a) The cavity quantum electrodynamics system, κ is the damping rate of the cavity, γ is the spontaneous emission rate of the quantum system, and g is the coupling constant between the quantum system and the cavity mode[ 9]; (b) the progress of the energy exchange and the transmission spectrum of the cavity for the weak coupling (red) and strong coupling (blue) regimes[ 9]; (c) the enhancement of spontaneous emission for the weak coupling regime[ 7]; (d) the periodic energy exchange for the strong coupling regime[ 7].

    下载: 全尺寸图片 幻灯片

    图 2  (a)复合银纳米棒-金纳米薄膜间隙表面等离激元结构, 模式匹配的低损耗介质纳米光纤放置在薄膜上方; (b)量子发射体在间隙结构中沿不同衰减通道的自发辐射归一化衰减速率[ 43]

    Fig. 2.  (a) The coupled Ag nanorod-Au nanofilm gap plasmon system, with a phase-matched low loss dielectric nanofiber above the nanofilm; (b) the normalized decay rates of the quantum emitter in the gap structure into different decay channels[ 43].

    下载: 全尺寸图片 幻灯片

    图 3  (a)可调谐间隙表面等离激元结构; (b)高对比度自发辐射开关, 随着折射率的变化, 自发辐射速率可以实行从$103\gamma_{0}$ $8750\gamma_{0}$的变化; (c)高收集效率模拟图, 光子能量有42%被有效收集到光纤中[70]

    Fig. 3.  (a) The hybrid tunable gap surface plasmon nanostructure; (b) the high-contrast switching of spontaneous emission, with the change of index, the spontaneous emission rate can be tuned from $103\gamma_{0}$ to $8750\gamma_{0}$; (c) the diagram of high-efficiency extracting, with 42% of the photons can be collected into the nanofibers[70].

    下载: 全尺寸图片 幻灯片

    图 4  (a)纳米棒和纳米线的复合结构; (b)银纳米线和银纳米棒复合系统以及(c)介质纳米线和银纳米棒复合系统中的各个衰减通道的归一化衰减系数[ 71]

    Fig. 4.  (a) The coupled nanorod-nanowire system. The normalized decay rates into different channels in the coupled (b) Ag nanowire-Ag nanorod system and (c) dielectric nanowire- Ag nanorod system[ 71].

    下载: 全尺寸图片 幻灯片

    图 5  (a)倏逝真空中的表面等离激元纳米腔量子电动力学体系; (b)在倏逝真空下的耦合系数g的增强[ 88]

    Fig. 5.  (a) The plasmonic nano-CQED system in evanescent-vacuum; (b) the enhancement of the coupling coefficient in evanescent-vacuum[ 88].

    下载: 全尺寸图片 幻灯片

    图 6  (a)介质纳米圆环-纳米线复合结构; (b)纳米线存在时的耦合系数增强[ 90]

    Fig. 6.  (a) The hybrid nanotoroid-nanowire system; (b) the enhancement of the coupling coefficient in the nanogap with the nanowire[ 90].

    下载: 全尺寸图片 幻灯片

    深圳坪山网站建设公司沈阳网站排名优化服务苏州相城网站优化网站优化关键词库青岛企业网站建设优化服务泰安网站优化效果怎么样网站搜索优化好选云速捷来看网站优化代码优付费网站优化公司大连网站排名优化价格厦门做网站优化哪家好壹启航网站优化怎么设置长春网站推广优化公司口碑好的seo网站优化软件优化网站的方法去联火30星榆次网站优化推广上海网站优化如何株洲外贸网站优化推广贵阳公司网站优化电话长沙网站首页优化报价深圳各大网站优化费用多少和田地网站优化公司网站优化项目服务汕头网站优化费用招聘网站SEO优化员黄江镇网站优化的方案网站优化推广费用网站优化和推广正确选择云速捷软文优化网站免费优化网站排名优化网站哪个公司好香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声卫健委通报少年有偿捐血浆16次猝死汪小菲曝离婚始末何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言男子被猫抓伤后确诊“猫抓病”周杰伦一审败诉网易中国拥有亿元资产的家庭达13.3万户315晚会后胖东来又人满为患了高校汽车撞人致3死16伤 司机系学生张家界的山上“长”满了韩国人?张立群任西安交通大学校长手机成瘾是影响睡眠质量重要因素网友洛杉矶偶遇贾玲“重生之我在北大当嫡校长”单亲妈妈陷入热恋 14岁儿子报警倪萍分享减重40斤方法杨倩无缘巴黎奥运考生莫言也上北大硕士复试名单了许家印被限制高消费奥巴马现身唐宁街 黑色着装引猜测专访95后高颜值猪保姆男孩8年未见母亲被告知被遗忘七年后宇文玥被薅头发捞上岸郑州一火锅店爆改成麻辣烫店西双版纳热带植物园回应蜉蝣大爆发沉迷短剧的人就像掉进了杀猪盘当地回应沈阳致3死车祸车主疑毒驾开除党籍5年后 原水城县长再被查凯特王妃现身!外出购物视频曝光初中生遭15人围殴自卫刺伤3人判无罪事业单位女子向同事水杯投不明物质男子被流浪猫绊倒 投喂者赔24万外国人感慨凌晨的中国很安全路边卖淀粉肠阿姨主动出示声明书胖东来员工每周单休无小长假王树国卸任西安交大校长 师生送别小米汽车超级工厂正式揭幕黑马情侣提车了妈妈回应孩子在校撞护栏坠楼校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变老人退休金被冒领16年 金额超20万西藏招商引资投资者子女可当地高考特朗普无法缴纳4.54亿美元罚金浙江一高校内汽车冲撞行人 多人受伤

    深圳坪山网站建设公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102 Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357 Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357 Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318 Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737 Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80 Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839 Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463 Google Scholar

    [9]

    Benson O 2011 Nature 480 193 Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263 Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372 Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551 Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81 Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325 Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379 Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89 Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282 Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002 Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402 Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404 Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65 Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903 Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654 Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401 Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812 Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601 Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602 Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174 Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245 Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431 Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111 Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402 Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002 Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427 Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002 Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245 Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002 Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459 Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971 Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807 Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879 Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488 Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783 Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83 Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181 Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200 Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197 Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401 Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557 Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075 Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671 Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062 Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601 Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801 Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281 Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401 Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329 Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127 Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401 Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358 Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882 Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433 Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244 Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203 Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681 Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401 Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441 Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502 Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802 Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001 Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835 Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115 Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393 Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930 Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369 Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845 Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131 Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816 Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303 Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603 Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475 Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925 Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817 Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453 Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139 Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473 Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖.  耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 73(8): 084205. doi:  10.7498/aps.73.20232025
    [2] 李远芳, 姜园, 赵磊.  基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi:  10.7498/aps.73.20231343
    [3] 李锦芳, 何东山, 王一平.  一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi:  10.7498/aps.73.20231519
    [4] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才.  微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi:  10.7498/aps.72.20222220
    [5] 郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平.  含多个相干耦合人工原子的单模腔的输入输出特性. 物理学报, 2022, 71(24): 244204. doi:  10.7498/aps.71.20221456
    [6] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞.  电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟. 物理学报, 2022, 71(14): 147302. doi:  10.7498/aps.71.20220194
    [7] 闫晓宏, 牛亦杰, 徐红星, 魏红.  单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi:  10.7498/aps.71.20211900
    [8] 张萌徕, 覃赵福, 陈卓.  基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi:  10.7498/aps.70.20201424
    [9] 郭绮琪, 陈溢杭.  基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi:  10.7498/aps.70.20210290
    [10] 褚培新, 张玉斌, 陈俊学.  开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi:  10.7498/aps.69.20200369
    [11] 吴晗, 吴竞宇, 陈卓.  基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi:  10.7498/aps.69.20191225
    [12] 王栋, 许军, 陈溢杭.  介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi:  10.7498/aps.67.20181106
    [13] 李明, 陈阳, 郭光灿, 任希锋.  表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi:  10.7498/aps.66.144202
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起.  基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi:  10.7498/aps.66.145201
    [15] 赵泽宇, 刘晋侨, 李爱武, 徐颖.  金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi:  10.7498/aps.65.231101
    [16] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才.  内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi:  10.7498/aps.63.244203
    [17] 卢道明.  腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi:  10.7498/aps.63.060301
    [18] 赵娜, 刘建设, 李铁夫, 陈炜.  超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi:  10.7498/aps.62.010301
    [19] 陈翔, 米贤武.  二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi:  10.7498/aps.60.104204
    [20] 张丽萍, 温荣吉.  含有广义守恒律的生长方程标度奇异性的直接标度分析. 物理学报, 2009, 58(8): 5186-5190. doi:  10.7498/aps.58.5186
目录
  • 第68卷,第14期 - 2019年07月20日
计量
  • 文章访问数:  15119
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-04-11
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回

深圳坪山网站建设公司沈阳网站排名优化服务苏州相城网站优化网站优化关键词库青岛企业网站建设优化服务泰安网站优化效果怎么样网站搜索优化好选云速捷来看网站优化代码优付费网站优化公司大连网站排名优化价格厦门做网站优化哪家好壹启航网站优化怎么设置长春网站推广优化公司口碑好的seo网站优化软件优化网站的方法去联火30星榆次网站优化推广上海网站优化如何株洲外贸网站优化推广贵阳公司网站优化电话长沙网站首页优化报价深圳各大网站优化费用多少和田地网站优化公司网站优化项目服务汕头网站优化费用招聘网站SEO优化员黄江镇网站优化的方案网站优化推广费用网站优化和推广正确选择云速捷软文优化网站免费优化网站排名优化网站哪个公司好香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声卫健委通报少年有偿捐血浆16次猝死汪小菲曝离婚始末何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言男子被猫抓伤后确诊“猫抓病”周杰伦一审败诉网易中国拥有亿元资产的家庭达13.3万户315晚会后胖东来又人满为患了高校汽车撞人致3死16伤 司机系学生张家界的山上“长”满了韩国人?张立群任西安交通大学校长手机成瘾是影响睡眠质量重要因素网友洛杉矶偶遇贾玲“重生之我在北大当嫡校长”单亲妈妈陷入热恋 14岁儿子报警倪萍分享减重40斤方法杨倩无缘巴黎奥运考生莫言也上北大硕士复试名单了许家印被限制高消费奥巴马现身唐宁街 黑色着装引猜测专访95后高颜值猪保姆男孩8年未见母亲被告知被遗忘七年后宇文玥被薅头发捞上岸郑州一火锅店爆改成麻辣烫店西双版纳热带植物园回应蜉蝣大爆发沉迷短剧的人就像掉进了杀猪盘当地回应沈阳致3死车祸车主疑毒驾开除党籍5年后 原水城县长再被查凯特王妃现身!外出购物视频曝光初中生遭15人围殴自卫刺伤3人判无罪事业单位女子向同事水杯投不明物质男子被流浪猫绊倒 投喂者赔24万外国人感慨凌晨的中国很安全路边卖淀粉肠阿姨主动出示声明书胖东来员工每周单休无小长假王树国卸任西安交大校长 师生送别小米汽车超级工厂正式揭幕黑马情侣提车了妈妈回应孩子在校撞护栏坠楼校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变老人退休金被冒领16年 金额超20万西藏招商引资投资者子女可当地高考特朗普无法缴纳4.54亿美元罚金浙江一高校内汽车冲撞行人 多人受伤

深圳坪山网站建设公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化